A continuous gas-phase method for producing single-wall carbon nanotubes at high catalyst productivity and high yield is disclosed. The method involves the use of a novel in-situ formed catalyst to initiate and grow single-wall carbon nanotubes using a carbon-containing feedstock in a high temperature and pressure process. The catalyst comprises in-situ-generated transition metal particles in contact with in-situ-generated refractory particles. The population of nucleating sites for single-wall carbon nanotubes is enhanced due to the ease of formation of a population of refractory particles. These, in turn, improve the nucleation and stability of the transition metal particles that grow on them. The larger number of transition metal particles translate into a larger number of sites for single-wall carbon nanotube production. The higher catalyst yields provide a means for obtaining higher purity single-wall carbon nanotubes.

Web www.patentalert.com

> Autothermal reactor and method for production of synthesis gas

~ 00302